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ABSTRACT
We compare Genetic Algorithms (GA’s) with Probability
Collectives (PC), a new framework for distributed optimiza-
tion and control. In contrast to GA’s, PC-based methods do
not update populations of solutions. Instead they update an
explicitly parameterized probability distribution p over the
space of solutions. That updating of p arises as the opti-
mization of a functional of p. The functional is chosen so
that any p that optimizes it should be p peaked about good
solutions. The PC approach works in both continuous and
discrete problems. It does not suffer from the resolution lim-
itation of the finite bit length encoding of parameters into
GA alleles. It also has deep connections with both game
theory and statistical physics. We review the PC approach
using its motivation as the information theoretic formulation
of bounded rationality for multi-agent systems. It is then
compared with GA’s on a diverse set of problems. To handle
high dimensional surfaces, in the PC method investigated
here p is restricted to a product distribution. Each distribu-
tion in that product is controlled by a separate agent. The
test functions were selected for their difficulty using either
traditional gradient descent or genetic algorithms. On those
functions the PC-based approach significantly outperforms
traditional GA’s in both rate of descent, trapping in false
minima, and long term optimization.
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1. INTRODUCTION
Genetic algorithms (GA) [9] have been used as computa-

tional models of natural evolutionary systems and as adap-
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tive algorithms for solving complex problems. At the core
of this type of optimization algorithm is a population of so-
lutions that are used to attempt to solve the problem at
hand, in contrast to single-solution based algorithms such
as Simulated Annealing and Extremal Optimization. In the
past decade, the research on Multiagent Systems (MAS)
has led to an advanced class of population-based adaptive
algorithms that aims to provide both principles for con-
struction of complex systems involving multiple agents and
mechanisms for coordination of interacting agents’ behavior.
While there is no generally accepted definition of “agent” in
Computer Science [17], for the purposes of this paper, we
consider an agent to be an entity, such as a robot, which
is self-interested and capable of learning in an environment.
Furthermore, there is a specified system objective with re-
spect to MAS which rates the performance of the joint ac-
tions of the agents.

Typically the search of adaptive, distributed agent-based
algorithms is conducted by having each agent run its own re-
inforcement learning algorithm [29, 26, 20]. In this method-
ology the global utility function G(x) in the system maps
a joint move of the agents, x ∈ X, to the performance of
the overall system. However, in practice the agents in a
MAS are bounded rational; the equilibrium they reach typ-
ically involves mixed strategies rather than pure strategies
– i.e., they don’t settle on a single point x optimizing G(x).
This suggests formulating a framework to explicitly account
for the bounded rational, mixed strategy character of the
agents. Probability Collectives (PC) adopts this perspective
to show that the equilibrium of a MAS is the minimizer of
a Lagrangian L(P ) (derived using information theory) that
quantifies the expected value of G for the joint distribution
P (x1, x2, ..., xN ) [25, 23, 22].

Now consider a bounded rational game in which the agents
are independent, with each agent i choosing its move xi at
any instant by sampling its probability distribution (mixed
strategy) at that instant, qi(xi). Accordingly, the probabil-
ity distribution of the joint-moves is a product distribution;
i.e., P (x) = P (x1, x2, ..., xN ) =

∏N
i=1 qi(xi), if there are N

agents participate in the game. In this representation of a
MAS, lacking the full joint probability distribution, all cou-
pling between the agents occurs indirectly. It is the separate
distributions of the agents {qi} that are statistically coupled,
while the actual moves of the agents are independent.

The core of PC-based algorithms is thus to approximate
the joint distribution by the product distribution, and to
concentrate on how the agents update the probability distri-
butions across their possible actions instead of specifically on



the joint action generated by sampling those distributions.
The PC approach differs from traditional optimization

methods such as gradient descent or GA which concentrate
on a specific choice for the design variables (i.e. pure strate-
gies) and on how to update that choice. Since the PC ap-
proach operates directly on probability distributions, it of-
fers a direct treatment for incorporating uncertainty, which
is also represented through probabilities [3]. This is the
most salient feature that this class of algorithms possesses
– the search course is guided by a probability distribution
over x, rather than a single value of x. By building such a
probabilistic model of promising solutions and sampling the
built model to generate new candidate solutions, PC allows
the agents to significantly expand the range of exploration
of the search space, and simultaneously focus on promising
solutions areas. As a result, the estimation of distribution
algorithms can provide a robust and scalable solution to
many important classes of optimization problems.

2. REVIEW OF RELATED WORK
Many techniques in the evolutionary computation com-

munity use Boltzmann distributions in ad hoc ways to up-
date a “population” of x’s, e.g., “truncation selection” and
“Boltzmann selection.” These rules are not formally de-
rived, and do not directly concern themselves with distri-
butions q. However, some of them are similar to the PC
update rules, in particular iterative focusing rules, only ap-
plied to sets of Monte Carlo sample points (the population)
rather than to q. There are other techniques which also
use Boltzmann distributions, although without a popula-
tion, e.g., simulated annealing.

These early techniques do not consider the underlying dis-
tribution that gets sampled to produce the population. Such
consideration was introduced in PBIL [2], MIMIC [4] and
other Estimation of Distribution Algorithms (EDAs) [11],
followed shortly by the powerful CE method [16]. EDAs
replace traditional variation operators of genetic and evo-
lutionary algorithms, such as mutation and crossover, by
building a probabilistic model of promising solutions and
sampling the built model to generate new candidate solu-
tions.

However while considering distributions, none of this early
work casts the objective as a minimization of a functional
of that distribution. Accordingly, all the power arising from
minimizing Euclidean vectors is absent in this work. There
is none of the second order methods, difference utilities, or
data-ageing that appear to be crucial for very large prob-
lems.

There is other previous work on optimization that has
directly considered the distribution q as the object of inter-
est such as deterministic annealing [5] when the conditional
G can be evaluated in closed form, and therefore has no
concern for Monte Carlo sampling issues. Most tantaliz-
ingly, Probability matching [18] uses Monte Carlo sampling
to optimize a functional of q. However this work was in the
context of a single agent, did not exploit the vector space
properties, and was not pursued.

Other work has both viewed q as the fundamental object
of interest and used techniques like data-aging and differ-
ence utilities [28, 27, 24]. However this work was not based
on information-theoretic considerations and had no explicit
objective function for q. It was the introduction of such
considerations that resulted in PC. Finally, shortly after the

introduction of PC a variant of its Monte Carlo updating
has been introduced, called the MCE method [15].

3. BOUNDED RATIONAL GAME THEORY
In this section we review PC as the information-theoretic

formulation of bounded rational game theory [3, 12].

3.1 Review of noncooperative game theory
Assume that a set of N players participate in a nonco-

operative game. Each player i has its own set of allowed
pure strategies. A mixed strategy is a distribution qi(xi) over
player i’s possible pure strategies [6]. Each player i also has
a private utility function gi that maps the pure strategies
adopted by all N of the players into the real numbers. So
given mixed strategies of all the players, the expected utility
of player i is

E(gi) =

∫
dx

∏
j

qj(xj)gi(x)

In a Nash equilibrium, every player adopts the mixed
strategy that maximizes its expected utility, given the mixed
strategies of the other players. Nash equilibria require the
assumption of full rationality, that is, every player i can
calculate the strategies of the other players and its own as-
sociated optimal distribution.

3.2 Review of the maximum entropy principle
In the absence of full rationality, the equilibrium is deter-

mined based on the information available to the players. The
Shannon entropy, S(P ) = − ∫

dyP (x) ln(P (x)), is a unique
real-valued quantification of the amount of syntactic infor-
mation in a distribution P (x). Hence, the distribution with
minimal information is the one that does not distinguish
at all between the various x, i.e., the uniform distribution.
Given some incomplete prior knowledge about a distribu-
tion P (x), this says that the estimate P (x) should contain
the minimal amount of extra information beyond that al-
ready contained in the prior knowledge about P (x). This
approach is called the maximum entropy (maxent) princi-
ple and it has proven useful in domains ranging from signal
processing to supervised learning [13].

3.3 Maxent Lagrangians
One can consider an external observer of a multi-player

game attempting to determine the equilibrium, i.e., the joint
strategy that will be followed by real-world players of the
game. The observer only knows the expected utility for
each player rather than the full joint probability distribution
the players are following. The best estimate of the joint
distribution q that generated those expected utility values,
by the maxent principle, is the distribution with maximal
entropy, subject to those expectation values.

For simplicity assume a finite number of players and a dis-
crete set of possible strategies for each player. In addition,
to agree with convention in other fields, the sign of each
gi is flipped so that the associated player i wants to min-
imize that function rather than maximize it. (Intuitively,
this flipped gi can be regarded as the “cost” to player i.)

For prior knowledge consisting of the set of expected utili-
ties of the players {εi}, the maxent estimate of the associated
q is given by the minimizer of the Lagrangian:



Lq ≡
∑

i

βi[Eq(gi)− εi]− S(q)

=
∑

i

βi[

∫
dx

∏
j

qj(xj)gi(x)− εi]− S(q), (1)

where the subscript on the expectation value indicates that
it is evaluated under distribution q, and the {βi} are “in-
verse temperatures” (i.e., βi = 1/Ti) implicitly set by the
constraints on the expected utilities.

The mixed strategies minimizing the Lagrangian are re-
lated to each other via

qi(xi) ∝ e
−Eq(i) [G|xi], (2)

where the overall proportionality constant for each i is set
by normalization, and

G(x) ≡
∑

i

βigi(x).

The subscript q(i) on the expectation value indicates that
it is evaluated according to the distribution

∏
j 6=i qj . The ex-

pectation is conditioned on player i making move xi. Eq. (2)
shows that the probability of player i choosing pure strategy
xi depends on the effect of that choice on the utilities of the
other players.

Now consider the case of maximal prior knowledge for
the behavior of player i. Here the actual joint-strategy of
the players and therefore all of their expected utilities are
known. For this case, trivially, the maxent principle says
the “estimate” q is that joint-strategy (it being the q with
maximal entropy that is consistent with the prior knowl-
edge). The same conclusion holds if the prior knowledge
also includes the expected utility of player i.

Removing player i’s strategy from this maximal prior knowl-
edge leaves the mixed strategies of all players other than
i, together with player i’s expected utility. Now the prior
knowledge of the other players’ mixed strategies can be di-
rectly incorporated into a maxent Lagrangian for each player:

Li(qi) ≡ βi[εi − E(gi)]− Si(qi)

= βi[εi −
∫

dx
∏

j

qj(xj)gi(x)]− Si(qi).

The solution is a set of coupled Boltzmann distributions:

qi(xi) ∝ e
−βiEq(i) [gi|xi]. (3)

Following Nash, Brouwer’s fixed point theorem can be
used to establish that for any non-negative values {β}, there
must exist at least one product distribution given by the
product of these Boltzmann distributions (one term in the
product for each i).

The first term in Li is minimized by a perfectly rational
player. The second term is minimized by a perfectly irra-
tional player, i.e., by a perfectly uniform mixed strategy qi.
Thus βi in the maxent Lagrangian explicitly specifies the
balance between the rational and irrational behavior of the
player. When β →∞, the set of q that simultaneously mini-
mize the Lagrangians will recover the Nash equilibria of the
game, which is the set of delta functions about the Nash

equilibria. The same is true for Eq. (2). In fact, Eq. (2)
is just a special case of Eq. (3), where all player’s share
the same private utility, G. Such games are known as team
games. This reflects the fact that for this case, the difference
between the maxent Lagrangian and the one in Eq. (1) is
independent of qi. Due to this relationship, the guarantee of
the existence of a solution to the set of maxent Lagrangians
implies the existence of a solution of the form for Eq. (2).

3.4 Optimizing the Lagrangian
Given that the agents in a multi-agent system are bounded

rational, if they play a team game with world utility G, their
equilibrium will be the optimizer of G. Furthermore, if con-
straints are included, the equilibrium will be the optimizer
of G subject to the constraints. The equilibrium can be
found by minimizing the Lagrangian in Eq. (1) where the
prior information set is empty, e.g. for all i, εi = {0}.

Specifically for the unconstrained optimization problem,

min
~x

G(~x)

assume each agent sets one component of ~x as that agent’s
action. The Lagrangian Li(qi) for each agent as a function
of the probability distribution across its actions is,

Li(qi) = E[G(xi, x(i))]− TS(qi)

=
∑
xi

qi(xi)E[G(xi, x(i))|xi]− TS(qi),

where G is the world utility (system objective) which de-
pends upon the action of agent i, xi, and the actions of the
other agents, x(i). The expectation E[G(xi, x(i))|xi] is eval-
uated according to the distributions of the agents other than
i:

P (x(i)) =
∏

j 6=i

qj(xj).

The entropy S is given by:

S(qi) = −
∑
xj

qi(xj) ln(qi(xj)).

Each agent then addresses the following local optimization
problem,

min
qi

Li(qi),

s. t.
∑
xi

qi(xi) = 1, qi(xi) ≥ 0, ∀xi.

During the minimization of the Lagrangian, the tempera-
ture T offers a means to adjust the degree of the exploitation
of existing promising solutions (low temperature) and that
of the exploration of the search space (high temperature).

One can employ gradient descent or Newton updating to
minimize the Lagrangian since both the gradient and the
Hessian are obtained in closed form. Using Newton updat-
ing and enforcing the constraint on total probability, the
following update rule at each iteration is obtained [21]:

qi(xi) → qi(xi)− αqi(xi)×
{(E[G|xi]− E[G])/T + S(qi) + ln qi(xi)},



where α plays the role of a step size. The step size is required
since the expectations result from the current probability
distributions of all the agents. The update rule ensures that
the total probability sums to unity but does not prevent
negative probabilities. To ensure this, all negative compo-
nents are set to a small positive value, typically 1 × 10−6,
and then the probability distribution is re-normalized.

3.5 Product Distribution MAS Algorithms
To perform this gradient descent in probability space each

agent must estimate the expected value of any of its ac-
tions, E[G|xi], from monte-carlo samples. The optimization
for both the discrete and continous parameter optimization
was discussed in Bieniawski, Kroo & Wolpert [3]. Briefly,
optimization proceeds in alternating rounds of monte-carlo
sampling blocks, and updates to the agents’s probability dis-
tribution over the parameter value. To draw a monte-carlo
sample each agent chooses the value for its parameter xi

from its current probability distribution, and the world cost
function G(x) is evaluated. We note that although we use a
world cost function for pedagogical simplicity, other formu-
lations in which each agent has its own cost function may
be more desirable in under-sampled problems.

Each agent computes an estimate of the expected cost as
a function of the parameter value, E[G|xi], by interpolation
over the continuous range from the sampled values using a
Gaussian kernel density estimator (i.e. a convolution over
the delta function samples). To permit sampling from this
implicit probability distribution (PD) over the continuous
range, it is evaluated on a grid and the probability of any
off-grid points is linearly interpolated.

The number of samples in each monte-carlo block deter-
mines accuracy of the expected cost estimate. Here we as-
sume the case that sampling the objective function is costly,
so we wish to gain the most information from the least num-
ber of samples. The kernel density estimation implies and
exploits weak prior knowledge about smooth interpolation
between the sample points. Additionally, as long as each it-
eration update does not dramatically change the PD we can
re-use samples from the previous iterations, geometrically
weighting them according to their “age” in interations. One
can crudely consider the imperfections that these augmen-
tations introduce as another contribution to the bounded
rationality term that broadens the probability distribution.

The primary free parameters in the optimization are the
gaussian kernel width (τ), the rate of cooling (δT/T ), the
number of monte-carlo samples per iteration, the propor-
tional step size in the gradient descent (α), and data-aging
rate (γ). Since the cooling is geometric the initial tempera-
ture T selection is logarithmically insensitive, and in prac-
tice can be adaptively set after observing the domain of the
objective function values. The grid size of the PD repre-
sentation is an asymptotically unimportant free parameter
trading numerical precision for computation time.

4. EXPERIMENTAL RESULTS
In this section, we report a comparison of a Multi-agent

Probability Collective (see [3] for the detailed algorithm)
with a Genetic algorithm in searching for the global min-
imum of four traditional test function surfaces of increas-
ing complexity and difficulty. Many of the characteristics
in these testbeds are considered important by evolutionary
algorithm practitioners, such as multimodality, nonlinearity

and non-separability, etc. The study of search efficiency usu-
ally involves defining a performance measure that embodies
the idea of rate of improvement, so that its change over time
can be monitored for investigation. In many practical prob-
lems, a traditional performance metric is the “best-so-far”
curve that plots the fitness of the best individual that has
been seen thus far by generation n for the GA, i.e., a point in
the search space that optimizes the objective function thus
far. The best-so-far curves presented for each testbed are
the mean over 50 runs and error bars on the graph show the
95% confidence intervals about the mean.

In contrast, in the PC, the result returned is a probability
distribution across the variable space that optimizes an as-
sociated Lagrangian. It embodies a notion of a region where
the minimum is likely to be located as well as an uncertainty
due to both imperfect sampling, and the stochastic indepen-
dence of the agents’ actions. To compare this on even footing
to the GA, we focus solely on the samples themselves. We
note however, this is an imperfect summary: for example,
generally the maximum of the PD will not actually be one
of the samples, though it is one’s best single guess of the
minimum.

In a basic genetic algorithm the population consists of
genotypes that encode solutions (phenotypes) to some prob-
lems. Evolution occurs by iterated stochastic variation of
genotypes, and selection of the best phenotypes is according
to how well they optimize the function of interest. Table 1
depicts the process of a simple genetic algorithm by which
we use to compare with the PD-based MAS algorithm.

Table 1: Mechanism of a simple GA.

1. Randomly generate an initial population of l n-bit
genotypes (individuals).

2. Evaluate each individual’s fitness.
3. Repeat until l offspring have been created.

a. select a pair of parents for mating;
b. apply crossover operator;
c. apply mutation operator.

4. Replace the current population with the new population.
5. Re-interate from Step 2 until terminating condition.

For our traditional GA, we examined a range of popula-
tion sizes (50,100, 200 and 500) to bracket a range of initial
descent rates and long term performance. The 200 member
GAs generally had the same long-term performance but con-
verged faster than the GAs with 500 members. The 50 mem-
ber populations generally descended quickly but converged
to sub-optimal solutions. Parameter values were finely dis-
cretized to approximate a continuous range, and encoded as
bit strings. (Various bit lengths were tried before settling
upon 20 or 50 bits.) The GA experiments employ a binary
tournament selection [8], one-point crossover and mutation
rates of 0.7/pair and 0.005/bit, respectively.

In the following examples the optimization free param-
eters for the PC were set as follows: step size α = 0.2,
data-ageing rate γ = 0.5, cooling rate δT /T = 0.01 , Gaus-
sian kernel width τ is set to 1% of the range of the search
parameter, and T = 0.1 was a sufficiently high starting tem-
perature. Monte-calro block sizes of 50 and 25 were exam-
ined. Interestingly, using more samples per iteration did not
significantly improve the best-so-far value for any given it-
eration. Thus only the results for the 25 monte-carlo blocks



are reported since they use fewer samples per iteration.

4.1 The Schaffer FunctionF7

Schaffer’s test function F7 [19] is defined as:

f(x) = (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1],

where −1 ≤ xi ≤ 1 for 1 ≤ i ≤ 2. Figure 1.a displays
the surface which is plotted upside down for easier viewing
of the inverted minimum as a peak. Since there are many
local optima in the search space, the population in the GA
can easily converge on any of them. The barriers would
also present considerable difficulty to search approaches that
evolve a single point x using local gradient information.

For this simple 2-dimensional case one could feasibly model
the probability distribution in the full joint PC space rather
than approximating it as a product distribution. However
since we are, in fact, exploring multi-agent systems, instead
two agents will carry out the search in the two parameters
independently. For the GA, each variable is encoded by 50
bits; thus each agent in the GA consists of a bit string of
length 100 (two blocks of 50 bits are concatenated to form
a string).
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Figure 2: Best-so-far performance on Schaffer F7.

Figure 2 displays the best-so-far values attained by the
Multi-agents system(MAS) and the GA as a function of the
number of sample evaluations of the objective function. The
curves are the mean values over 50 repetitions and the ver-
tical bars are the 95% confidence intervals on the means.
Curves for different population sizes of the GA are shown.
The methods distinguish themselves with different rates of
initial descent of the objective function (on left) and the
long-term performance (on right). Notably, the run-to-run
variation of the performance trajectory is much lower on the
PC-based MAS than for the GA (see vertical bars).

Figure 3 displays the evolution of the probability distri-
bution of the two variables for a typical MAS run. As can
be seen, the probability density quickly centers about the
optimum. This explains why the PC-based MAS is able to
locate the optimum in a rather short period of time.
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Figure 3: Evolution of probability distribution of x1

and x2 on Schaffer F7.

4.2 The Rosenbrock Function
The second testbed is the generalized Rosenbrock function

in ten dimensions. The definition of this function is [10]:

f(x) =

N−1∑
i=1

[100(x2
i − xi+1)

2 + (1− xi)
2], (4)

where x = [x1, x2, . . . , xN ]T , −5.12 ≤ xi ≤ 5.12 .
Although the problem we use here is 10 dimensional (N=10)

with ten agents, we provide the reader a visual gist of the
surface by showing the Rosenbrock function in two-dimensions.
Again the plot is reversed for easy viewing of the minimum
as a peak. Since the spike is so sharp, a logarithmic vertical
axis is displayed in Figure 1.b.

Rosenbrock’s saddle is a classic optimization problem with
a narrow global optimum hidden inside a long, narrow, curved
flat valley. Monte-carlo methods will have difficulty landing
a point in the narrow spike and thus will not efficiently lo-
cate it. The U-shape will also tend to make decomposition of
the PC into a product distribution challenging. Since it has
no barriers the surface would be ripe for gradient descent;
however while the valley will be found quickly the curva-
ture and flatness of the valley floor will frustrate sampled
gradient estimation.

Each individual of the population of the GA is a 200 bit-
string concatenated by ten blocks of 20 bits each encoding
a variable. The empirical results are displayed in Figure 4.
The top of this figure shows the best-so-far values attained
by the algorithms. The bottom plot displays a detailed view
from the range of the objective’s value on the interval [0,
1000]. One can clearly see that the PC technique can locate



Figure 1: Surface plot for the four testbeds.

the global optimum more quickly and again significantly out-
performs the GA in long term performance.
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Figure 4: Best-so-far performance on Rosenbrock
function.

4.3 The Ackley Path Function
Ackley’s Path [1] is a widely used multimodal test func-

tion. The function’s definition is:

f(x) = −ae−b(

∑
i x2

i
N

)
1
2 − e

∑
i cos(cxi)

N + a + e1,

where a=20, b=0.2, c = 2π, and −32.768 ≤ xi ≤ 32.768 for
1 ≤ i ≤ n.

The problem we use here is again 10 dimensional (N=10);
thus the MAS will use ten agents to search the optimum.
For the GA, each individual of the population is a 200 bit-
string concatenated by ten blocks of 20 bits each encoding
a variable. Figure 1.c gives a visual gist of the function in
a lower 2-dimensional form. The surface is overall a single
deep well with a locally rough surface. For easy viewing of
the details the figure is enlarged, showing the region in the
neighborhood of the minimum.

The empirical results of the search algorithms on this sur-
face are displayed in Figure 5. It is clear that the PC-based
MAS technique again significantly outperforms the GA in
early decent towards the minimum.

4.4 The Michalewicz Epistatic Function
The final testbed employed in this section is Michalewicz’s

epistatic function [14]:

f(x) = −
N∑

i=1

sin(yi)sin
2m(

iy2
i

π
),

where

yi = xicos
π

6
− xi+1sin

π

6
, if i mod 2 = 1 and i 6= N ;

yi = xi−1sin
π

6
+ xicos

π

6
, if i mod 2 = 0 and i 6= N ;

yN = xN ,

0 ≤ xi ≤ π for 1 ≤ i ≤ N .
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Performance comparison between GA and MAS on Ackley function (N = 10)
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Figure 5: Best-so-far performance on Ackley’s Func-
tion.

A system is highly epistatic if the optimal allele for any
locus depends on a large number of alleles at other loci.
The concept of epistasis in nature corresponds to nonlin-
earity in the context of GA [7]. This function is a highly
multimodal, nonlinear and nonseparable testbed (n! local
optima). A sketch of a two-dimensional version of this func-
tion is displayed in Figure 1.d for the steepness parameter
m = 10. Larger m leads to more difficult search. For very
large m the function behaves like a needle in the haystack
since the function values for points in the space outside the
narrow peaks give very little information on the location of
the global optimum.

The periodic, self-similar valleys can be expected to create
more local minima in the product space PD than in the true
fully coupled representation. Thus this surface will be hard
for PC. Another difficulty comes from the simple rotation
of the valleys that couple all the axes in pairs. This explicit
coupling is well designed to frustrate the explicitly decoupled
Multi-agent probability system. Conversely, because only
consecutive alleles are coupled by the rotation, cross-over is
well prepared to conserve this coupling in evolution.

We searched a ten dimensional (N=10) space for the cases
of m = 10 and m = 200. As before the GA uses 20 bits per
variable. The empirical results are displayed in Figure 6 and
Figure 7 for m = 10 and m = 200, respectively.

It is clear that the PC-based MAS technique again signif-
icantly outperforms the GA. In particular, in case of m =
200, the PC still demonstrates a surprising search power
even though the function behaves like a needle in the haystack
and is very difficult to search.

5. DISCUSSION AND CONCLUSION
We presented a comparative study of two agent-based

adaptive algorithms – the GA and the PC approach.The PC
method appeared superior to the GA method both in initial
rate of decent and perhaps more significantly on long term
performance for these traditional GA community testbed
functions. In comparing the performance curves one should
note that the bottom axis is not iterations but is in func-
tion evaluations. This is apropos to the common situation
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Performance comparison between GA and MAS on epistatic Michalewicz function (N = 10, m = 10)
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Figure 6: Best-so-far performance on Michalewicz’s
epistatic function (m=10).
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Performance comparison between GA and MAS on epistatic Michalewicz function (N = 10, m = 200)
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Figure 7: Best-so-far performance on Michalewicz’s
epistatic function (m=200).

where function evaluations are expensive. In the real world,
a “function evaluation” might actually require a complex
experiment or simulation (such as building an airplane wing
shape or a long monte-carlo simulation of a protein fold-
ing) or in real-time optimization the sampling rate could be
measurement-rate limited. Thus minimizing function calls
is desirable for response rate, total speed, and expense. This
basis allows one to view how much information is being
squeezed out of every precious sample. In the testbed func-
tions just examined the analytic functional forms were, in
fact, relatively cheap to evaluate in which case it should be
noted that a GA iteration has less overhead than the more
complex PD gradient ascent.

The function evaluation axis penalizes methods that take
more samples per iteration without proportionally improv-
ing their performance; an advantage of the PC method is it
performs quite well with fewer samples per iteration than the
GAs. We note that while the smallest GA population sizes
have faster initial descent rates than their larger brethren,
they typically converged to sub-optimal solutions away from
the global minimum so that decreasing the population size
of the GA to match the PC performance would have wors-
ened long term performance. Additionally, the PC best-so-
far trajectory was far more reproducible than that of the



low-population GAs.
The PC approach introduces a methodology by which the

search course in this system is guided by probability distri-
bution over variables, rather than using single values derived
from those variables. The resulting distributed algorithms
can facilitate the search for robust and scalable solutions
to difficult problems. Using several examples of paramet-
ric optimization problems we thus demonstrate the power
of this PC-based MAS methodology for estimation of dis-
tributed algorithms, which can significantly outperform the
traditional GA on complex function optimization problems.
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